EECS 129B Winter 2008 Final Project Report

Team Members

Last Name First Name
Rubow Erik
Birkel Anton

Player Harmonica

1. Abstract

The goal of the Player Harmonica project was to build a device that could play the harmonica au-
tonomously and could be reprogrammed to play arbitrary songs. This was a challenging endeavor for
two computer engineers because of the amount of mechanical engineering involved. Basically, we had
to come up with a way to blow or suck air through a selected hole in the harmonica, and control this
electronically with a programmable microcontroller. We chose to avoid any techniques involving the
moving of the harmonica or any air tubes back and forth, anticipating that quick and accurate move-
ments with such a system would be difficult. Instead we employed a technique in which a system of
overlaid masks controlled by solenoids, each in an on or off state, would determine the path and direc-
tion of air. The song to be played is stored in a small EEPROM internal to the microcontroller, so that
it is non-volatile and can be updated over a serial link without reloading the firmware.

2. Project overview (High level)

High-Aemp MOSFET

Hir Source

Suck Blow

AtMeqal6d

Solenoid Solenaid
Harmonica Mask Switch Switch

Harmorica Nelay
I | Relay |:|| Melay ’]l Relay ’:Il Relay

Solenoid Solenoid Solenoid Solenoid
L Comect to
Harmonica Mask | [

20V _DC

Figure 1 - High-Level Diagram

3. Project components

1) Mechanical Engineering
-Find an air supply with suitable blow and suck strengths
-Design and build the mask system that selects the path of air
-Design and build the mask system that selects the direction of air

-Choose the proper dimensions so that everything fits together nicely

2) Electrical Engineering
-Provide stable voltage sources with high current and wattage output
-Choose relays with a small coil voltage and high load voltage and current
-Design circuit to provide variable voltage source with very high current capacity for the air

pump

3) Software Engineering
-Encode musical notes as bytes and design song file formats (binary and ascii)
-Design a simple file transfer protocol for writing to the EEPROM over serial link

-Make all functions non-blocking to enable quick response to user input

-Create an interface for manual control of harmonica operation

-Implement client application to run on a computer allowing a user to create songs as text files,
convert them to binary, upload them, initiate and stop playback, and control the harmonica
manually.

4. Design description

The tubes carrying air (for blowing and sucking) are directly attached to the first stage of masks, which
select the direction of air into an intermediate air chamber. One solenoid controls each tube. If one
solenoid is on, air will be blown into or sucked out of the air chamber. If neither solenoid is on, no air
will pass through the air chamber. The second stage of masks consists of 4 sheets of Plexiglas with
holes arranged in a binary fashion in them (see Figure 2). The sheets are moved up and down by
solenoids in order to select a specific hole on the harmonica for air to pass through.

O O O O O O
O 0O O O O O

OO OO 00O
OO OO oJo

0000
O0O0O0 Q00O

0000
O00O0000O0

Figure 2 — Overlaid Masks Concept

Each solenoid is controlled through a relay switch because the ATMegal68 is unable to provide large
enough currents. A MOSFET with a high current rating is used to control the air source. By varying the
voltage between 1.5V and 6.0V DC we can control the speed of the air created by the fan, and by ex-
tension the volume of the harmonica. See Figure 3 for an electrical schematic.

LY
¥

+5Y
-
+20%

= = K1
] GEM-1A-5VDC

|

=

|7T

solenoid1

C2

PCE(RESET/PCINT14) PCO{#DCO/PCINTS)

PC1{4DC1/PCINTS)
PC2Z(#DC2/PCINT10)
)
)
)

Kz
] GEM-1A-5YVDC

o
PCA{ADCHPCINTI <
PCA{ADCA/SDAPCINTT2

PCS(ADCS/SCLPCINTY 3
=31 PBE(XTALI/TOSCIPCINTS)

EEmma
o
E, O
-«
A
E

PUSH_BTN

s
.
|

solenoidz b

K3
] GEM-1A-5YV0C

|

2] PBF(XTALZTOSCZPCINTT

|
1

@
e

K4
| "] GEM-1ASVRC
Ii'«:

I s

EM-1ASVDC

PDORXDPCINTIE)
PD1{TADYPCINTI?)
L WCC POZ{NTOPCINTTE)
POSINT1/OCZEPCINTTG)
20 POA(TOR CRAPCINTZO)
= AvCC POS{TI/OCOBPCINTZT)
——] AREF PDB{AINO/OCOAPCINTZE)
PD7(AINT/PCINTZS)
)
)
)
)
)
)

solenoid3

|

F/
|

solenoidd

PBO(CPI/CLKOPCINTD

FE1(OC1 APCINTI
221 aanD PBEZ(33/0CTE/PCINTE
PEA(MOSLOCZ A/PCINT3
81 ano PB4 (MISO/PCINTA
PBS(3CK/PCINTS

ATWEGA4B/88/168-PU air pump

]

1
s

+12%
W

7

| E e =

solenoids 4

BM-1ASVDC

solenoids 4

=t t
3 1 3 1
m= [0
7
KB
| -—‘

&)

GMND

o)
et
ol

GND

Figure 3 - Electrical Design

The user is provided with a push button, a potentiometer, and a serial interface for interaction with the
device. The microcontroller checks every 10ms and processes the input immediately. Song playback is
done in a non-blocking fashion so that the user interface is still available while a song is playing. The
software was essentially designed as a state machine. A button push in wait mode puts the microcon-
troller into play mode, and vice versa. The potentiometer controls the air supply using a PWM output
and the previously described MOSFET circuit. The primary function of the serial interface is to write
to and read from the microcontroller's EEPROM. However, it is also used to manually control the har-
monica and to start and stop song playback. The protocol is expandable. A special command byte puts
the microcontroller into command mode, after which a particular command is sent to put it into read
mode, write mode, playback mode, or some other mode. If a command byte is found in a data stream, it
is preceded by an escape byte. An escape byte in a data stream is also preceded by an escape byte. See
Figure 4 for a representation of the microcontroller's operation. The binary song format is as follows:
The first byte is the number of notes. The second byte is the tempo in beats per minute. The rest of the
file consists of a pair of bytes for each note. The first is the encoded note value. The second is the note
length, with a quantum of one third of a sixteenth note. The ascii file format is similar: The first line is
the number of notes (in decimal). The second line is the tempo (in decimal). Each remaining line corre-
sponds to a note and contains a two-character note (C4, E6, etc.) and the duration (in decimal, same
quantum) separated by a space.

N
m\

N
LY

Figure 4 — Microcontroller Software State Machine

5. System test plan

high duty-cycle PWM
signal to air pump and
solenoid control signals
so as to play each “suck”
note.

Test | Description of Set-up Input or Stimulus Expected
T Behavior
ber

1 Only air pump, micro- | Microcontroller provides | Air pump is powered
controller, and control | PWM air pump control on, air stream strength
circuit (no solenoids or | signal, low duty cycle to | varies with control
mask assembly). high duty cycle to low signal, air pump is

duty cycle. powered off.

2 Only soleniods, physi- | Microcontroller provides | Each solenoid lifts its
cal mask assembly, all binary combinations of | mask when its control
microcontroller, and solenoid control signals. | signal is high, for all
control circuits (no combinations. The de-
air). sired hole-path is in

alignment in each
case.

3 Air pump, mask as- Microcontroller provides | Each “blow” note is
sembly, solenoids, mi- | high duty cycle PWM sig- | heard.
crocontroller, and con- | nal for the air pump and
trol circuits (full as- solenoid control signals
sembly). so as to play each “blow”

note.
4 Full assembly. Microcontroller provides | Each “suck” note is

heard.

Full assembly.

Microcontroller provides
high duty-cycle PWM
signal to air pump and
solenoid control signals
so as to play a C scale
spanning the range of the
harmonica. Increase the
speed until a limit is
reached.

Each note is heard.
The maximum transi-
tion speed is reason-
able.

Full assembly plus usb
connection to a com-
puter. Microcontroller
is pre-programmed
with one song that is
played when a user
pushes a button.

User pushes button, waits
for song to finish. Com-
puter loads new song onto
the microcontroller with-
out reloading the
firmware or restarting.
User pushes button again,
waits for song to finish,
powers off the entire as-
sembly (including the mi-
crocontroller), powers it
back on and pushes the
button again.

Pre-programmed song
is played after the first
button-press. New
song is played after
the second button-
press and after the
third button-press.

6. Project timeline

Chose Harmonica Project — 11/9/07

Ordered Harmonica - 11/22

Redesign includes masks and solenoids — 11/23/07

Ordered a variety of solenoids for testing plus mosfet and relays — 12/1/07
Tested electrical and strength properties of solenoids — 12/7/07

Initial dimensions specification — 1/4/08

Ordered small air pump — 1/11/08

Small air pump insufficient, bought mattress inflater pump — 1/18/08

First attempt to cut plexiglas using score-and-crack method — 1/25/08
Successfully designed and tested air pump control circuit - 1/26/08
Cut some acrylic pieces with band saw — 1/29/08

Finished bulk of cutting acrylic using radial arm saw — 2/1/08
Finished hand-cutting acrylic, filed edges — 2/8/08

Drilled holes in acrylic, glued mask boxes — 2/15/08

Received high-current power supply - 2/16/08

Bought wood, build solenoid holders and air chamber - 2/22/08
Completed Construction - 3/12/08

Completed Software - 3/12/08

7. Division of work

Erik:
Design mask assembly
Cut mask parts
Assemble masks and solenoid mounts
Write microcontroller code
Anton:
Design solenoid mount
Drill mask parts
Assemble masks and solenoid mounts
Write computer interface code
8. Cost
Part Unit Cost Number of Units
Number/Name
Harmonica 59.00 1
Arduino 34.95 1
Air pump 11.99 1
Tubing 10.99 1
Power Mosfet 0.65 1
PNP 0.15 1
Resistors 0.05 3

Total Cost

59.00
34.95
11.99
10.99
0.65
0.15
0.15

Relays 4.50 6 27.00
Power Suppy 31.39 1 31.39
Solenoids 3.95 6 23.70
Plexiglas 6.29 1 6.29
Plywood 3.52 1 3.52
Dowel Rod 1.70 1 1.99
Krazy Glue 0.99 1 0.99
Total cost of project: $212.76

9. Problem encountered and comments

One of the largest problems encountered during the project was fabrication. Because Plexiglas
was selected as the construction material we were unable to easily cut, drill, and assemble our struc-
ture. We had to find fine-tooth bladed saws as well as a diamond tipped drill bit that would not chip or
crack the Plexiglas. While researching techniques and strategies to effectively cut and drill the Plexi-
glas finally lead to the correct tools, we could only find access to hand tools. Unfortunately the hand
tools were not only slow and imprecise, but were also prone to snapping the Plexiglas, resulting in
many scrapped pieces.

It was also difficult to figure out how to properly control our air supply and solenoids from the
Atmegal68 microcontroller because the devices are high-voltage and high-current, while the micro-
controller only produces 5v at a very low current. While the solution was simply a matter of purchasing
relays, we initially had insufficient understanding of relays and their operating characteristics. As such
our first relay purchase would not work correctly. After more research and understanding we were able
to buy the relays that would work properly in our circuit.

